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Abstract—The ability to efficiently scan and diagnose 

medical conditions is a cornerstone of modern healthcare 

technology. This paper explores the application of Principal 

Component Analysis (PCA) as a dimensionality reduction 

technique in medical diagnostics, inspired by the scanning 

capabilities of Baymax, a fictional healthcare robot from Big 

Hero 6. By reducing high-dimensional medical data into 

smaller set of principal components, PCA enables the 

identification of critical patterns and anomalies that may 

indicate underlying conditions. This study discusses the 

broader implications of intregating PCA into autonomous 

diagnostic system, drawing parallels with Baymax’s 

futuristic scanning methods.  
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I.   INTRODUCTION 

Medical diagnostics have always been a cornerstone of 

healthcare, evolving from manual assessments to 

advanced computational technologies. In modern 

medicine, diagnostic tools such as imaging devices and 

biochemical analyzers generate vast amounts of high-

dimensional data. While these data sets hold critical 

insights, their size and complexity often make them 

challenging to process effectively. This is particularly 

evident in fields like radiology, where analyzing medical 

images such as CT or MRI scans requires not only 

precision but also efficiency. 

The concept of a healthcare robot capable of 

instantaneous and accurate health scanning, as 

represented by Baymax in Big Hero 6, offers a vision of 

what the future of diagnostics might look like. Baymax 

demonstrates the ability to assess a patient’s condition 

using advanced scanning techniques, analyze the 

collected data in real time, and provide actionable 

insights. While the fictional character’s technology is 

beyond current capabilities, its foundation in 

computational data analysis and pattern recognition is 

already being explored in real-world applications. 

Principal Component Analysis (PCA) is one such 

method that has become essential in handling high-

dimensional data. PCA simplifies complex data by 

reducing its dimensions while preserving the most 

significant features. This ability to isolate key patterns 

makes it a powerful tool for tasks like medical 

diagnostics, where identifying anomalies or disease 

markers is crucial. By leveraging eigenvalues, 

eigenvectors, and variance maximization, PCA allows the 

extraction of meaningful insights from seemingly 

overwhelming datasets. 

 

II.  THEORITICAL FOUNDATION 

 A. Eigenvalues and Eigenvectors 

Eigenvalues and eigenvectors are fundamental concepts 

in linear algebra, used to understand matrix 

tranformations. For a square matrix A of size n x n, an 

eigenvector x ≠ 0 is defined as a vector that satisfies the 

following equation: 

 

Ax = λx 

 

where λ denotes a scalar referred to as the eigenvalue 

associated with the eigenvector. This equation indicates 

that when the matrix A operates on the vector x, the 

outcome is a scaled variant of x, with λ defining the 

scaling factor. Importantly, eigenvectors only change in 

magnitude (scaling), not direction, unless the eigenvalue 

is negative, which causes a reverse in direction. 

 
Fig. 2.1 Illustration of eigenvectors and eigenvalues in a 2D 

matrix tranformation. (Source:Aljabar Linear dan Geometri 

(Dr. Rinaldi Munir)) 

 

In other words, Eigenvalues denote the scaling factor 

imposed on the eigenvector during matrix transformation, 

while eigenvectors indicate the direction in which the 

matrix transformation results just in scaling, without 

altering direction. The eigenvalue λ quantifies this 

scalling: 
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- λ > 1: The eigenvector is stretched. 

- 0 < λ < 1: The eigenvector is compressed. 

- λ < 0: The eigenvector's orientation is inverted. 

This attribute is essential for comprehending the structure 

of data or systems undergoing transformation, since it 

emphasizes significant orientations within the 

transformation process. 

The process of calculating eigenvalues and 

eigenvectors involves solving the characteristic equation 

 

det(A − λI) = 0 

 

where I is the identity matrix. The roots of this 

polynomial equation are the eigenvalues of A. For each 

eigenvalue, the corresponding eigenvectors are 

determined by solving the system 

 

(A − λI)x = 0 

 

Diagonalization is a significant application of 

eigenvalues and eigenvectors. A matrix A is 

diagonalizable if there exists a matrix 𝑃, composed of the 

eigenvectors of A, such that  

A = PDP-1 

where D is a diagonal matrix containing the eigenvalues 

of A.  

 
Fig. 2.2 Diagonal matrix. (Source:Aljabar Linear dan Geometri 

(Dr. Rinaldi Munir))  

 

Diagonalization is especially advantageous for 

streamlining matrix operations, as exponentiating a 

diagonal matrix 𝐷 is computationally efficient, allowing  

Ak=PDkP-1 

However, not all matrices are diagonalizable; a requisite 

number of linearly independent eigenvectors must be 

present to construct the matrix 𝑃. 

 

B. Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) is a fundamental 

technique in linear algebra with extensive applications in 

various fields, including machine learning, data analysis, 

and signal processing. The SVD of a matrix provides a 

way to decompose it into three constituent matrices, 

revealing intrinsic properties such as rank, range, and null 

space [2]. It is especially vital in dimensionality reduction 

tasks, such as Principal Component Analysis (PCA), as it 

enables the representation of high-dimensional data in a 

reduced manner while preserving its fundamental 

attributes. Every matrix A of dimensions m×n can be 

decomposed as: 

 

A = UΣVT 

 

where U is an orthogonal m×m matrix comprising the left 

singular vectors of A, Σ is a diagonal m×n matrix 

including singular values, which are the square roots of 

the eigenvalues of ATA or AAT, arranged in decreasing 

order, and 𝑉T: The transpose of an orthogonal n×n matrix 

whose columns represent the right singular vectors of A. 

 
Fig. 2.3 Matrix Illustration with SVD methods. (Source:Aljabar 

Linear dan Geometri (Dr. Rinaldi Munir))  

 

The SVD method begins with the normalization of the 

data in matrix A, ensuring that all features possess a mean 

of zero and a variance of one. This guarantees that 

discrepancies in scales among features do not skew the 

results. The covariance matrix C = ATA is calculated to 

elucidate the correlations among characteristics. The 

matrix SVD decomposes A into three components: U, Σ, 

and VT. Here, Σ is a diagonal matrix including singular 

values that signify the significance of each direction in the 

data. U and V are orthogonal matrices that comprise the 

left and right singular vectors, respectively. Ultimately, 

data is mapped into a lower-dimensional space by 

choosing the greatest 𝑘 singular values and their 

associated singular vectors, so preserving maximum 

variance while minimizing dimensionality and noise. 

In addition to its applications in machine learning and 

data analysis, SVD is also instrumental in various 

scientific fields. For example, in spectroscopy, SVD is 

employed to enhance the accuracy of spectral data 

analysis, which is vital for understanding chemical and 

biochemical processes [7]. 

 

C. Principal Component Analysis (PCA) 

A statistical method for feature extraction and 

dimensionality reduction is Principal Component 

Analysis (PCA). It makes it possible to represent high-

dimensional data in a lower-dimensional space by 

identifying the directions (principal components) along 

which the variation in the data is largest. The first 

principal component accounts for the largest variance, 

followed by the second, and so on. This method not only 

aids in reducing the dimensionality of the dataset but also 

enhances interpretability by filtering out noise and 

redundant features [3]. 

Principal Component Analysis (PCA) begins with data 

normalization, which guarantees that every feature in the 

dataset is on the same scale. Because characteristics with 

greater scales have the potential to dominate the 

covariance matrix and produce biased results, this stage is 

essential. The data matrix A's features are all adjusted to 

have a standard deviation of one and a mean of zero. This 

is accomplished by deducting each feature's mean from 
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the values that correspond to it, and then dividing the 

result by the feature's standard deviation. The input for 

the next PCA phases is the normalized dataset, or Anorm. 

 

 
 

where μ is the mean of each feature, and σ is the standard 

deviation. 

Following normalization, the covariance matrix is used 

to record the relationships between the dataset's 

characteristics. The degree to which feature pairings 

fluctuate together is measured by this matrix. Whereas a 

negative covariance suggests an adverse link, a positive 

covariance shows that two traits rise together. The 

following formula is used to determine the covariance 

matrix C: 

 

 
 

where m is the number of samples in the datasets 

and Anorm is the normalized data matrix. Since its 

eigenvalues and eigenvectors serve as the basis for 

determining main components, this covariance 

matrix is an essential component of PCA. PCA finds 

the directions in the data that capture the most 

variance by breaking down C. 

PCA operates by identifying the principal 

components of a dataset, which are the directions of 

maximum variance. This is achieved through the 

Singular Value Decomposition (SVD) of the data 

matrix, where PCA seeks to find a low-dimensional 

subspace that best approximates the high-

dimensional data in a least-squares sense [6]. 

Moreover, PCA has been adapted to handle 

various challenges in data processing, such as 

missing values and outliers. Techniques have been 

developed to make PCA robust against such issues, 

ensuring that the analysis remains valid even when 

the data is imperfect [5]. 
 

D. Baymax as a Robotic Healthcare 

Baymax, the robotic healthcare assistant from Disney's 

"Big Hero 6," epitomizes the potential of robotic 

technology in medical settings. As a soft, friendly robot 

designed to provide care and comfort, Baymax represents 

a significant shift in the perception and functionality of 

healthcare robots. The integration of robotic technologies 

in healthcare has significantly transformed medical 

practices, particularly in the context of surgery, patient 

care, and rehabilitation. The application of robotics in 

these areas has been driven by the need for enhanced 

precision, reduced invasiveness, and improved patient 

outcomes. 

The evolution of soft robotics represents another 

significant advancement in medical technology. Soft 

robotic devices, characterized by their compliance and 

adaptability, have been developed for various 

applications, including rehabilitation and personalized 

medicine [4] 

 

III.   IMPLEMENTATION 

The primary objective of this project is to create an 

automated health diagnosis system using Principal 

Component Analysis (PCA), drawing inspiration from the 

methodology of Big Hero 6's Baymax healthcare robot. In 

order to provide precise and effective diagnosis, this 

system attempts to integrate patient medical data, 

including characteristics like blood pressure, glucose 

levels, BMI, and medical history, which are acquired 

from wearable sensors or medical devices. The main 

technique for dimensionality reduction is PCA, which 

helps find pertinent patterns in patient data without losing 

any important information in the process. In order to 

improve diagnosis accuracy and computational efficiency, 

the system also employs a classification model 

constructed with techniques like Random Forest to 

forecast a patient's health state based on the data 

processed by PCA. 

 

 

A. Data Collection 

For this experiment, we used the Pima Indians Diabetes 

Dataset, which consists of 768 samples with 8 features, 

including Pregnancies, Glucose, BloodPressure, 

SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, 

and Age.. This dataset was chosen because of its 

relevance to diabetes prediction, as it contains both 

numerical data and a binary target variable indicating the 

presence (1) or absence (0) of diabetes. 

 

 
Fig. 3.1 Load Dataset from Online Source.   

 

B. Data Preprocessing 

The data is preprocessed to make sure it is clean and 

standardized before PCA is applied. Normalization Data 

is normalized using StandardScaler to standardize all 

features to have a mean of 0 and a standard deviation of 1, 

ensuring PCA works optimally. 
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Fig. 3.2 Code to Normalized Data.  

 

 

C. PCA Implementation 

Following preprocessing, PCA is used to reduce the 

number of features while maintaining the majority of the 

variance in the data. By lowering the dimensionality of 

the data, PCA can help prevent overfitting and increase 

model efficiency. Based on the explained variance ratio, 

from eight components we can chose six principal 

components for our experiment because they were able to 

explain more than 90% of the dataset's variance: 

 

 
Fig. 3.3 Code to Selected 6 Principal Components.  

 

We utilized a Scree Plot to display the cumulative 

variance in order to guarantee that the six components 

were able to capture an adequate amount of useful 

information: 

 

 
Fig. 3.4 Code for Scree Plot.  

 

 
Fig. 3.5 Visualization of Scree Plot – PCA.  

 

 

D. Model Training and Evaluation 

Several machine learning models were built to predict 

diabetes after principal component analysis (PCA) was 

applied. Using accuracy, precision, recall, and F1-score, 

these models were examined to determine their 

performance. For the purpose of training the models, the 

PCA-transformed training data was utilized: 

 

 
Fig. 3.6 Model Training using the PCA-transformed training 

data.  

 

For evaluation, we used accuracy, precision, recall, F1-

score, and confusion matrix. The evaluation results for 

Random Forest after applying PCA are as follows: 

 

 
Fig. 3.7 Evaluation Model With and Without PCA.  
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E. Result and Discussion 

The results for each model are evaluated based on 

accuracy, precision, recall, and F1-score. Among all the 

models tested, Random Forest and XGBoost achieving 

the highest accuracy, both have accuracy scores of 0.77, 

with similarly precision, recall, and F1-score. 

 

 
Fig. 3.8 . Random Forest Model Result  

 

 
Fig. 3.9 . XGBoost Model Result  

 

It is clear from the experimental data that PCA greatly 

enhanced the classification models' performance, 

especially with regard to accuracy, precision, recall, and 

F1-score. All models, including Random Forest and 

XGBoost, showed this. The PCA-trained model 

consistently performed better than the non-PCA-trained 

model. 

• Accuracy: Compared to the model without PCA, 

which had an accuracy of 0.74, the XGBoost 

model with PCA had the highest accuracy (0.77). 

This suggests that the model was able to better 

generalize and detect patterns in the dataset by 

lowering the dimensionality of the data through 

PCA, especially when working with intricate, 

high-dimensional characteristics. 

• Precision: All models showed comparable gains in 

precision, with Random Forest exhibiting the 

highest precision (0.74) when PCA was included. 

This indicates that PCA increased the model's 

overall accuracy while also lowering false 

positives, increasing its dependability in predicting 

positive cases (diabetes). 

• Recall: Recall, which gauges the model's accuracy 

in identifying all pertinent examples, also 

improved. Better recall scores were demonstrated 

by the PCA-based model, which reduced false 

negatives and increased the model's sensitivity to 

diabetic cases. 

• F1-Score: This metric, which weighs recall and 

precision, also showed that models with PCA 

performed better than those without. For instance, 

the XGBoost model with PCA produced a higher 

F1-score of 0.74 than the model without PCA 

(0.71). 

 

 
Fig. 3.10 . Comparison of Performance Model with PCA and 

without PCA  

 

IV.   CONCLUSION 

This study demonstrates the advantages of Principal 

Component Analysis (PCA) for dimensionality reduction 

in classification tasks, specifically in predicting diabetes 

with the Pima Indians Diabetes Dataset. PCA has 

demonstrated its utility in enhancing the performance 

metrics—accuracy, precision, recall, and F1-score of 

classification models such as Random Forest and 

XGBoost. 

PCA facilitated dimensionality reduction, enabling 

models to concentrate on the most pertinent features, 

thereby enhancing accuracy and F1-score. The XGBoost 

model incorporating PCA attained the highest accuracy of 

0.77, in contrast to the 0.74 accuracy of the model without 

PCA, demonstrating PCA's efficacy in enhancing 

predictive performance. The models trained with PCA 

demonstrated enhanced precision and recall, indicating 

superior performance in accurately identifying diabetes 

cases while minimizing false positives and false 

negatives. 

The enhancements noted in accuracy, precision, recall, 

F1-score, and computation time establish PCA as a 

crucial method for managing high-dimensional datasets, 

particularly in medical diagnostics. The capacity of PCA 
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to eliminate redundant features while preserving essential 

information markedly diminishes the likelihood of 

overfitting, thereby enhancing the model's generalization 

to novel data. 

This study highlights the significance of dimensionality 

reduction in the development of effective and efficient 

automated medical diagnostic systems. The application of 

PCA enhanced the predictive accuracy of the models and 

improved computational efficiency, establishing it as a 

crucial tool for healthcare applications requiring timely 

and accurate diagnoses. The findings underscore the 

significance of PCA in the advancement of Baymax-

inspired health diagnostic systems, facilitating quicker 

and more precise predictions for patients with diabetes 

and various medical conditions. 

 

V.   SUGGESTIONS 

This study illustrates the benefits of Principal 

Component Analysis (PCA) in enhancing model 

performance for automated health diagnostics. Future 

research should concentrate on the integration of PCA 

into real-time health diagnostic systems, exemplified by 

Baymax-inspired health scanners. PCA effectively 

diminishes the complexity of data obtained from wearable 

sensors, facilitating quicker and more precise real-time 

diagnosis. Future research may investigate the use of PCA 

in analyzing multimodal sensor data, integrating 

information from various devices (e.g., glucose meters, 

heart rate monitors, blood pressure cuffs) to develop a 

comprehensive diagnostic platform for continuous health 

monitoring. 

Future research should focus on improving model 

interpretability alongside enhancing real-time 

performance. PCA facilitates dimensionality reduction; 

however, it is essential for healthcare professionals to 

comprehend the mechanisms behind AI model 

predictions. Integrating PCA with explainable AI 

techniques such as LIME or SHAP provides clear and 

interpretable insights into model predictions, enhancing 

their trustworthiness and applicability in medical 

contexts. 

Expanding the dataset and incorporating more complex 

models, such as deep learning, should be prioritized. The 

growing accessibility of medical imaging, patient history, 

and genetic data suggests that future systems may 

leverage advanced machine learning models to manage 

extensive and varied datasets, thereby enhancing the 

accuracy and robustness of the models. This may enhance 

diagnostic efficacy across a wider array of conditions, 

thereby increasing the system's utility in preventive and 

real-time healthcare applications. 

 

VI.   APPENDIX 

Program applied in this paper is visible here. 
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